CSC 125 - Discrete Math I, Spring 2017

Graphs
Definition: A graph $G = (V, E)$ consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Example: This is a graph with four vertices and five edges.
Some Terminology

- In a *simple graph* each edge connects two different vertices and no two edges connect the same pair of vertices.
- A *multigraph* may have multiple edges connecting the same two vertices. When m different edges connect the vertices u and v, we say that \{u, v\} is an edge with *multiplicity* m.
- An edge that connects a vertex to itself is called a *loop*.
- A *pseudograph* may include loops, as well as multiple edges connecting the same pair of vertices.
Definition: An directed graph (or digraph) $G = (V, E)$ consists of a nonempty set of V vertices (or nodes) and a set of directed edges (or arcs). Each edge is associated with an ordered pair of vertices. The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.
Some Terminology (continued)

- A simple directed graph has no loops and no multiple edges.
- A directed multigraph may have multiple directed edges. When there are \(m \) directed edges from the vertex \(u \) to the vertex \(v \), we say that \((u, v) \) is an edge of multiplicity \(m \).
Summary of Graph Terminology

<table>
<thead>
<tr>
<th>Type</th>
<th>Edges</th>
<th>Multiple Edges</th>
<th>Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple graph</td>
<td>Undirected</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Multigraph</td>
<td>Undirected</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pseudograph</td>
<td>Undirected</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Simple directed graph</td>
<td>Directed</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Directed multigraph</td>
<td>Directed</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mixed graph</td>
<td>Both</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Definition: An adjacency list can be used to represent a graph with no multiple edges by specifying the vertices that are adjacent to each vertex in the graph.
Definition: Suppose that $G = (V, E)$ is a simple graph where $|V| = n$. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n. The *adjacency matrix* A_G of G, with respect to the listing of vertices, is the $n \times n$ zero-one matrix with 1 as its $(i, j)th$ entry when v_i and v_j are adjacent, and 0 as its $(i, j)th$ entry when they are not adjacent.
Adjacency Matrices (continued)

- Adjacency matrices can also be used to represent graphs with loops and multiple edges.
- A loop at the vertex v_i is represented by a 1 at the $(i, j)th$ position of the matrix.
- When multiple edges connect the same pair of vertices v_i and v_j, the $(i, j)th$ entry equals the number of edges connecting the pair of vertices.
Adjacency matrices can also be used to represent directed graphs. The matrix for a directed graph $G = (V, E)$ has a 1 in its $(i, j)th$ position if there is an edge from v_i to v_j where v_1, v_2, \ldots, v_n is a list of vertices.

The adjacency matrix for a directed graph does not have to be symmetric because there may not be an edge from v_i to v_j when there is an edge from v_j to v_i.

To represent directed multigraphs, the value of a_{ij} is the number of edges connecting v_i to v_j.